Asymptotic dimension of discrete groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On asymptotic dimension of groups

We prove a version of the countable union theorem for asymptotic dimension and we apply it to groups acting on asymptotically finite dimensional metric spaces. As a consequence we obtain the following finite dimensionality theorems. A) An amalgamated product of asymptotically finite dimensional groups has finite asymptotic dimension: asdimA ∗C B <∞. B) Suppose that G′ is an HNN extension of a g...

متن کامل

Dimension of Asymptotic Cones of Lie Groups

We compute the covering dimension the asymptotic cone of a connected Lie group. For simply connected solvable Lie groups, this is the codimension of the exponential radical. As an application of the proof, we give a characterization of connected Lie groups that quasi-isometrically embed into a non-positively curved metric space.

متن کامل

Asymptotic Dimension of Finitely Presented Groups

We prove that if a finitely presented group is one-ended then its asymptotic dimension is bigger than 1. It follows that a finitely presented group of asymptotic dimension 1 is virtually free.

متن کامل

On Asymptotic Dimension of Countable Abelian Groups

We compute the asymptotic dimension of the rationals given with an invariant proper metric. Also we show that a countable torsion abelian group taken with an invariant proper metric has asymptotic dimension zero.

متن کامل

Asymptotic Dimension of Relatively Hyperbolic Groups

Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups {H1, . . . ,Hm}. We prove that if each of the subgroups H1, . . . ,Hm has finite asymptotic dimension, then asymptotic dimension of G is also finite.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 2006

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm189-1-2